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Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing
challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV)
minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and
archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among
MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected;
PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between
sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly
Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did
not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB
with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clus-
tered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to
0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously
thought, and more organisms may be capable of Mn(II) oxidation than are currently known.

Coal mine drainage (CMD) from operating and abandoned
mines often contains elevated concentrations of dissolved

manganese (Mn). Removing this metal from contaminated water
is a significant challenge in mining regions across the world, in-
cluding the Appalachian Coal Basin in the eastern United States,
where centuries of coal mining have left thousands of abandoned
mines with effluent dissolved Mn concentrations as high as 150
mg liter�1 (1, 2). At such levels, Mn can damage ecosystems and
water distribution systems. One of the most common remediation
methods in this region involves biologically active limestone treat-
ment beds (3). These beds raise the pH of the CMD and promote
the oxidation of soluble Mn(II) to sparingly soluble Mn(III/IV)
minerals (4), which are retained in the beds and can be removed
periodically. Unfortunately, the performance of these Mn(II) re-
moval beds (MRBs) is highly variable due to insufficient knowl-
edge of the processes (biotic and abiotic) involved (2, 5). A better
understanding of the primary mechanisms contributing to
Mn(II) oxidation will aid technological advances and removal ef-
ficiencies.

Recent studies have demonstrated that although abiotic
Mn(II) oxidation is thermodynamically inhibited below pH 9
when oxygen is the oxidant (6), Mn oxide surfaces (7) and reactive
oxygen species (8, 9) catalyze oxidation of Mn(II) at near-neutral
pH. Mineral surface-catalyzed Mn(II) oxidation was shown to
occur in simulated CMD treatment bioreactors, although micro-
bial activity dominated the oxidation of Mn(II) to Mn(III/IV)
oxides under certain treatment conditions (2). A diversity of bac-
teria (10–15) and fungi (12, 15–18), isolated from a range of
aquatic and terrestrial environments, are known to oxidize Mn(II)
when grown in pure culture, although not as an energy-conserv-
ing process but rather as a side reaction of unknown physiological
basis. The remediation of Mn-contaminated waters is thought to
rely largely on such organisms. Indeed, culture-based studies of

Mn(II) removal systems in Wales, United Kingdom (19), and
across Pennsylvania (5, 20) have identified numerous resident
bacteria and fungi that oxidize Mn(II), although the abundance
and activity of these isolates relative to the total microbial com-
munities in the treatment systems is unknown. Since Mn(II) oxi-
dation is not an energy conservation process (i.e., respiration) in
any known Mn(II)-oxidizing microorganism (21, 22), it is possi-
ble that it does not correlate positively with abundance. For exam-
ple, superoxide-mediated Mn(II) oxidation would be negatively
correlated with abundance if an organism used superoxide as a
signal at low cell densities but not at higher densities.

While culture-based studies are essential for elucidating the
mechanisms promoting biological Mn(II) oxidation (22–28),
these isolated organisms exist in complex communities whose in-
teractions could be modulating their Mn(II) oxidation activity
in the environment. Other community members, notably pho-
totrophs and diazotrophs, could be providing essential carbon
and nitrogen compounds. Conversely, heterotrophs could be
competing for limited resources. Finally, other unidentified com-
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munity members could be oxidizing Mn(II) but have resisted lab-
oratory cultivation. A culture-independent, community-level ap-
proach that encompasses groups known to contribute to
biological Mn(II) oxidation (bacteria and fungi), as well as other
potentially relevant community members (algae and archaea),
has, to our knowledge, not been performed on these treatment
systems but would greatly improve our understanding of key or-
ganisms and community interactions promoting Mn(II) oxida-
tion in situ.

Using an amplicon pyrosequencing approach, we character-
ized four microbial target groups (bacteria, archaea, fungi, and
algae) existing in four MRBs, performing at different levels, in
Pennsylvania that have been described previously (2, 5, 20) and
from which Mn(II)-oxidizing bacteria and fungi were isolated
(20): De Sale 1 and 2 (DS1 and DS2), PBS, and Saxman Run bed
C1 (SRC1), also known as Derry Ridge (2). At the time of sam-
pling, PBS and SRC1 were removing nearly 100% of influent
Mn(II), DS2 was removing 50%, and DS1 was not removing any
influent Mn(II). We aimed to determine (i) whether similar mi-
crobial communities are found in different MRBs or whether each
MRB develops a distinct community, (ii) whether differences in
community structure are apparent within MRBs, from the influ-
ent [where dissolved Mn(II) concentrations are highest] to the
effluent (where they are lowest), and (iii) whether communities in
MRBs are distinct from those in the surrounding uncontaminated
soil. These results ultimately will contribute to improving Mn(II)
remediation technologies by increasing our understanding of
MRB community diversity and highlighting key taxa present in
MRBs with near-complete Mn(II) removal.

MATERIALS AND METHODS
Sample collection. Four limestone-filled, geotextile-lined Mn(II) re-
moval beds (MRBs) in western Pennsylvania were sampled in November
2010: PBS, Saxman Run bed C1 (SRC1), and De Sale phases 1 and 2 (DS1
and DS2). These systems, described in earlier studies (2, 5, 20), treat coal
mine drainage with considerable dissolved manganese concentrations by
promoting microbiologically catalyzed oxidation of aqueous Mn(II)
compounds to sparingly soluble Mn(III/IV) oxide minerals that are re-
tained within the beds. DS1, PBS, and SRC1 receive influent Mn(II) con-
centrations averaging 18 to 20 mg liter�1, whereas DS2 has a higher mean
influent Mn(II) concentration, 31.2 mg liter�1 (see Table S1 in the sup-
plemental material) (2). PBS and SRC1 are highly effective in attenuating
Mn, with over 90% removal, resulting in mean effluent concentrations of
0.29 and 1.3 mg liter�1, respectively. DS2 is attenuating approximately
50% of dissolved Mn (mean effluent concentration of 17.1 mg liter�1),
and DS1 showed minimal Mn attenuation in the year preceding sampling
(see Table S1) (2). DS1 and DS2 are in close proximity to each other
(roughly 250 m) but are treating different influents. SRC1 and PBS are
roughly 100 km and 150 km from the DS sites, respectively, and are sep-
arated by 50 km.

MnOx-rich samples (limestone pebbles, sediment, and organic debris)
were collected near the influent, in the middle of the bed, and near the
effluent, although not every location was accessible in each MRB. There is
no influent sample for DS2 and no effluent sample for PBS, but DS1 and
DS2 each have two middle samples. In DS1 and DS2, the Mn oxides
occurred as loose soil-like sediments that were collected with sterile spat-
ulas. In PBS and SRC1, Mn oxides formed varnish-like coatings on the
limestone cobbles, so entire cobbles were collected. In addition, a control
soil sample was taken outside each MRB. Samples were immediately flash-
frozen in a dry ice-ethanol bath in the field and stored on dry ice during
transportation to the laboratory, where they were kept at �80°C until
processing.

DNA extraction, amplification, and pyrosequencing. Mn oxide sed-
iments and fragments of Mn-coated limestone were crushed with a sterile
pestle and mortar. For DS1 and DS2 samples, a single 0.5-g aliquot of
crushed sediment yielded sufficient DNA for amplification and sequenc-
ing. However, samples from PBS and SRC1 were more resistant to extrac-
tion. Four 0.25-g aliquots of each sample were extracted separately and
subsequently pooled and concentrated with ethanol precipitation, using
glycogen as a carrier. With these samples, smaller amounts of starting
material (half that recommended by the kit manufacturer) gave the best
yields, suggesting the difficulties were due to inhibition by metal cations
rather than to low biomass. DNA was extracted with the FastDNA Spin kit
for soil (MP Biomedicals), with the following modifications. Poly(A) (200
�g per sample) was added to the lysis buffer to reduce inhibition by metal
cations. Two homogenization steps on the FastPrep instrument (MP Bio-
medicals) were carried out with a 5-min incubation on ice in between. The
initial centrifugation step to remove sediments and cell debris was ex-
tended to 15 min, and the binding matrix incubation was extended to 10
min. Elution was carried out by resuspending the binding matrix in 100 �l
nuclease-free sterile water and incubating at 55°C. Extracts were quanti-
fied using the Qubit double-stranded DNA HS assay kit (Life Technolo-
gies) with a Qubit 1.0 fluorometer, and those exceeding 15 ng �l�1 were
diluted to that concentration. Each extract then was divided into four
aliquots, one for each of the four target amplifications.

Tag-encoded FLX amplicon pyrosequencing (TEFAP) was carried out
directly from aliquots of total community DNA at the Research and Test-
ing Laboratory (Lubbock, TX) as previously described (29). Four target
groups were amplified and sequenced from each of the 16 samples: (i)
bacterial 16S rRNA with primers 28F (modified from reference 30) and
519R (modified from reference 31), (ii) archaeal 16S rRNA with primers
349F and 806R (32), (iii) fungal ITS1-5.8S-ITS2 with primers ITS1F and
ITS4 (33, 34), and (iv) algal plastid 23S rRNA with primers AlgaeF and
AlgaeR (35) (see Table S2 in the supplemental material). Although the
algae are polyphyletic and are not a true phylogenetic group, these plastid
23S rRNA primers amplify cyanobacteria and six eukaryotic algal lineages:
Chlorophyta (green algae), Rhodophyta (red algae), Bacillariophyta (dia-
toms), Phaeophyceae (brown algae), Xanthophyceae (yellow-green algae),
and Euglenida (euglenids) (35).

Processing of raw pyrosequencing reads. Raw pyrosequencing reads
were processed as described in reference 36, using mothur 1.31.1 (37) and
following the recommendations of reference 38. Algal plastid flow files
were trimmed to a minimum and maximum length of 350, whereas other
target flow files were trimmed to 400.

Bacterial and archaeal sequences were aligned to the Silva bacterial and
archaeal small-subunit rRNA reference alignments (39) available in
mothur. Algal sequences were aligned to the Silva LSURef 111 database,
with metazoa sequences removed (which greatly improved the alignment
performance). Only the sequences spanning the targeted regions were
kept, and all sequences were trimmed to the same length. For bacteria and
archaea, this was determined by optimizing alignment end and minimum
length so as to keep 90% of sequences. For algae, the start and end posi-
tions were manually set based on the alignment statistics. Data were fur-
ther denoised by clustering together sequences with a 1-bp mismatch per
100 bp, and chimeras were removed using the mothur implementation of
uchime (40), with the more abundant sequences as a reference. Bacterial
sequences were further cleaned up by classifying against the Silva refer-
ence database using the Wang et al. method (41) with a k-mer size of 8, 100
bootstrap iterations, and a threshold of 60% for taxonomic assignment.
Following this step, sequences identified as mitochondria, chloroplasts,
Archaea, or Eukarya were removed. For fungal sequences, following the
primer, barcode, and homopolymer removal outlined in the previous
paragraph, the ITS1 region was extracted using ITSx (42) on the PlutoF
Workbench (43), and sequences shorter than 100 bp following this step
were discarded. Chimeras were removed as described above.

Diversity analyses and taxonomic assignment. Within each target,
the number of sequences per sample was normalized to the size of the
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sample with the lowest number of sequences. For bacteria, archaea, and
algae, operational taxonomic unit (OTU) clustering was carried out in
mothur using the multiple-sequence alignments generated during se-
quence processing. However, since multiple-sequence alignments of fun-
gal internal transcribed spacer (ITS) are problematic for all but the most
closely related species, OTU clustering of fungal sequences was carried out
based on pairwise distance values calculated in mothur, with consecutive
gaps treated as one and ignoring gaps at the ends of pairs.

mothur was used to generate OTU-by-sample tables at all OTU clus-
tering levels between 0.00 and 0.25 and to calculate the Simpson evenness
index (44). R (45) was used for plotting and subsequent analyses. The
vegan package (46) was used to calculate Bray-Curtis distances from rel-
ative abundance matrices and Jaccard distances from presence/absence
matrices (47), followed by nonmetric multidimensional scaling. Commu-
nity variation was partitioned between the two factors in this study (MRB
and location within bed) and their interaction using permutational anal-
ysis of variance based on distance matrices (48), which is implemented by
the adonis function in the vegan package, with 999 permutations. Bray-
Curtis and Jaccard distances subsequently were used in pairwise compar-
isons of the four target groups (bacteria, archaea, fungi, and algae) to look
for evidence of biotic coupling, which would be suggested by positive
correlations in distance values. The significance of pairwise correlations
was assessed using the Mantel test with 999 permutations.

Bacterial and archaeal sequences were classified against the Silva ref-
erence databases available in mothur, as described above, with a threshold
of 60%. Algal sequences were classified against the Silva LSURef 111 da-
tabase, with metazoan and fungal sequences removed and a threshold of
60%. For fungal ITS1 sequences, the UNITE�INSDC fungal ITS database
(49), version 27.01.13 (downloaded February 2013 from http://unite.ut
.ee/repository.php), was used as a reference for classification with the
modifications described in reference 36. Differences in the relative abun-
dances of taxonomic groups were assessed in R using t tests (soils versus
MRBs) and analysis of variance (ANOVA) (four MRBs), with P values
corrected for multiple comparisons.

Sequence read accession numbers. All sequence data were deposited,
with MIMARKS-compliant metadata, in the NCBI Sequence Read Ar-
chive under BioProject number PRJNA229802, BioSample numbers
SAMN02404598 to SAMN02404613. The metadata also are available sep-
arately as a MIMARKS-formatted table (see Data Set S1 in the supplemen-
tal material).

RESULTS

In total, 228,444 sequences passed a highly stringent quality con-
trol (Table 1; also see Results in the supplemental material). After
clustering into operational taxonomic units (OTUs), richness and
evenness of bacteria, fungi, and algae were plotted (see Fig. S1 and
S2), but no consistent patterns were observed (see Results in the
supplemental material), suggesting that at a coarse level, microbial
diversity is similar within and between MRBs and is comparable to
that in the surrounding soil. Statistical comparisons of observed
and estimated (Chao1) richness among the different MRBs

(ANOVA) and between the MRBs and the soils (t test) are shown
in Table S3.

Archaea. Of the four targets, the archaeal sequence data proved
most problematic and resulted both in the smallest percentage pass-
ing quality control (QC) (18.4%) (Table 1) and in the smallest sample
size (n � 254). When classified against the Silva archaeal reference
database, 70.8% of sequences remained unclassified at the phylum
level. Of the sequences that were placed in an archaeal phylum, fewer
than 1% (46 sequences in total) were classified further. However,
when classified against a combined bacterial/archaeal Silva database
with a higher bootstrap threshold (80 instead of 60), all sequences
were found to be bacterial (see Fig. S3 in the supplemental material).
Most were placed in the phyla Chlamydiae, Planctomycetes, and
Verrucomicrobia, with only 4.6% remaining unclassified at the
phylum level. Given that the archaeal data set appears to consist
entirely of nontarget bacterial amplicons, it was excluded from
further analyses. Further work with different primer sets will be
needed to determine whether Archaea truly are so scarce as to be
undetectable or whether their absence from our data set was due
to their signal being overwhelmed by nontarget amplification.

Influence of Mn(II) removal bed and location within beds.
Nonmetric multidimensional scaling (NMDS) was performed to
cluster samples based on the similarity of their microbial commu-
nities. NMDS based on Bray-Curtis distance of OTU relative
abundances showed that, with the three target groups (bacteria,
fungi, and algae), samples clustered largely by MRB (Fig. 1) and
not by their location within each bed (at the influent, where Mn
concentrations would be highest, in the middle, or at the effluent,
which would have the lowest Mn concentration). The soil samples
from each site, however, formed a separate cluster rather than
grouping with their corresponding treatment bed, except for
fungi, whose soil samples did not form a separate group. Figure 1
shows clustering based on OTUs defined at the 0.03 level, but
similar patterns were observed at all OTU clustering levels be-
tween 0.00 and 0.20 (data not shown). Furthermore, the same
patterns were observed with NMDS based on Jaccard distance
calculated from presence/absence matrices as opposed to relative
abundance (data not shown).

To test whether the clustering observed in NMDS plots indi-
cated significant differences, we carried out permutational analy-
sis of variance based on distances, which partitioned the sample
variance among the two factors, MRB (DS1, DS2, PBS, and SRC1)
and location within the bed (influent, middle, and effluent), as
well as their interaction (see Table S4 in the supplemental mate-
rial). The effect of the MRB was significant for bacteria, fungi, and
algae based on Bray-Curtis distances calculated from relative
abundance matrices, and it was significant for bacteria and algae

TABLE 1 Amplicon pyrosequencing output for the four target groups before and after sequence processing

Target
No. of raw
sequences No. per sample No. passing QC % passing QC

Final subsampled
no. per sample

Mean final sequence
length (bp)

Algae 221,986 1,986–44,231 79,491 35.8 518a 209.5
Archaea 110,177 1,850–14,016 20,256 18.4 254 226.7
Bacteria 167,808 2,817–20,535 50,095 29.9 1,166 210.7
Fungi 372,851 6,833–123,772 78,602 21.1 1,885 163.9

Total 872,822 228,444 26.2
a One algal sample, SRC1-soil, was removed from the data set due to the low number of sequences passing QC.

Microbial Communities in Manganese Removal Beds
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based on Jaccard distances calculated from presence/absence ma-
trices (P � 0.05) (see Table S4). The location within beds (influ-
ent, middle, or effluent) had a significant effect only on the bacte-
rial communities with presence/absence data, and there was no
significant interaction between these two factors in any of the
three target groups. Similar results (data not shown) were ob-
tained at the other OTU clustering levels (0.00 to 0.20).

Taxonomic profile. Proteobacteria accounted for 46.9% of all
bacterial sequences (36.9 to 57.9% per sample), more than all other
phyla combined, not including the 11.0% of bacterial sequences that
remained unclassified at the phylum level (Fig. 2). They were signifi-
cantly more abundant in the MRBs than in the soil samples (mean
proportion of 49.1% in beds versus 40.6% in soils; P � 0.031) (see
Table S5 in the supplemental material). The predominant proteobac-
terial classes, orders, and families are shown in Fig. S4, S5, and S6,
respectively. Most Proteobacteria belonged to the alpha and beta
classes (see Fig. S4), and there were no significant differences in
the relative abundance of the classes between the soil and beds or
among the four beds. The Alphaproteobacteria were dominated by
the order Rhizobiales in all samples except SRC1-influent (see Fig.
S5), and within this one order, 14 families were detected (see Fig.
S6), pointing to considerable diversity at increasingly fine resolu-
tion. Betaproteobacteria sequences were split mostly between the
orders Burkholderiales and Nitrosomonadales (see Fig. S5), al-
though the ratio of these two orders varied widely between and
within MRBs (e.g., Betaproteobacteria in PBS were mostly Nitro-
somonadales, whereas those in SRC1 were mostly Burkholderiales).
In all soil samples and in the PBS MRB samples, all Nitrosomon-
adales sequences belonged to the family Nitrosomonadaceae (see
Fig. S6); however, samples from inside the other MRBs also in-
cluded various proportions (2 to 100%) of the family Gallionel-
laceae (iron-oxidizing chemolithotrophs).

Of the other bacterial phyla detected, five accounted for 5 to
10% each of total bacterial sequences (Actinobacteria, Chloroflexi,
Acidobacteria, Cyanobacteria, and Bacteroidetes), and three
(Planctomycetes, Gemmatimonadetes, and Firmicutes) accounted
for 1 to 5% each. The relative abundance of these eight phyla was
similar in the four MRBs and in the soil samples, except for the
Acidobacteria, which were significantly more abundant in the soil

samples (mean relative abundance of 3.4% in beds versus 13.6%
in soils; P � 0.01). An additional 15 phylum-level groups were
detected with overall relative abundances below 1% (Nitrospirae,
Verrucomicrobia, Fusobacteria, Chlorobi, Fibrobacteres, Deinococ-
cus-Thermus, Spirochaetes, WCHB1-60, BD1-5, GOUTA4, and
candidate divisions OD1, OP10, TM6, TM7, and WS3).

The fungal sequences belonged mostly to the phyla Basidiomy-
cota (47.4% overall) and Ascomycota (38.8% overall), with 9.7% of
all fungal sequences remaining unclassified at the phylum level
(Fig. 2). Three other fungal phyla occurred only sparsely (3.6%
Zygomycota, 0.4% Chytridiomycota, and 0.1% Glomeromycota).
Unlike in the bacterial sequence data, stark differences were ob-
served between the MRBs at the phylum level in the fungal data
(Fig. 2), with Ascomycota and Basidiomycota relative abundances
being significantly different among the four beds (P � 0.001). DS1
and DS2 bed samples were heavily dominated by Basidiomycota
(which accounted for 80.3% and 73.1% of fungal sequences, re-
spectively), whereas for PBS and SRC1 samples, these proportions
were 31.3% and 17.6%, respectively. Conversely, DS1 and DS2
had lower relative abundances of Ascomycota sequences (10.9%
and 7.0%, respectively) than PBS (35.1%) and SRC1 (62.2%).
Also in contrast to the bacterial taxonomic profiles, which showed
some clear differences between MRBs and soil samples (consis-
tently more Acidobacteria and fewer Proteobacteria in soils, for
example), none of the fungal classes differed significantly in rela-
tive abundance between MRB samples and soil samples. Overall,
most Ascomycota sequences belonged to the class Dothideomycetes
(Fig. 2), and most of these were further grouped into the subclass
Pleosporomycetidae (see Fig. S7 in the supplemental material). Ba-
sidiomycota sequences belonged almost entirely to the class Aga-
ricomycetes, subclasses Agaricomycetidae, and incertae sedis (en-
compassing the orders Cantharellales, Polyporales, Russulales,
Sebacinales, and Thelephorales). A much larger proportion of Ba-
sidiomycetes than Ascomycetes remained unclassified at the sub-
class level and beyond (see Fig. S7).

Almost half of algal sequences (40.4%) belonged to the phylum
Chlorophyta (green algae) (Fig. 2). Most green algae (79.3% of
Chlorophyta sequences) could not be classified further. Those that
could were placed in the classes Chlorophyceae (orders Sphaero-
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pleales, Chlamydomonadales, and Oedogoniales) and Trebouxio-
phyceae (orders Chlorellales, Microthamniales, and Coccomyx-
aceae). After the Chlorophyta, the next most abundant phyla were
the Bacillariophyta (diatoms), accounting for 18.9% of total se-
quences, and the PX clade (encompassing the yellow-green algae
phylum Xanthophyceae), accounting for 11.3% overall. A total of
14.9% of algal sequences were unclassified at the phylum level. All
of the Bacillariophyta sequences that could be classified to genus
level (39.2%) were placed in the genus Fistulifera, and all of the PX
clade Xanthophyceae sequences belonged to the genus Vaucheria,
filamentous yellow-green algae. Of the four main phyla detected
in the algal sequence data, only the Bacillariophyta appeared to
differ among the four MRBs, with higher abundances in beds DS1
and DS2 (26.4% and 37.6%, respectively) than with PBS (6.7%)
and SRC1 (6.9%); however, following correction for multiple

comparisons, the difference was not significant (P � 0.197). Sim-
ilarly, Bacillariophyta appeared to differ between bed samples
(21.0%) and soil samples (10.3%), but the difference was not sig-
nificant (P � 0.249).

Occurrence of known Mn(II)-oxidizing organisms. Four
Mn(II)-oxidizing bacterial strains were isolated previously from
these MRBs (20), but no sequences with 100% similarity to these
isolates were detected in the MRB sequence data, except for one Pseu-
domonas sp. strain DS3sK1h sequence in SRC1. At a similarity level of
97.0 to 99.9%, these isolates accounted for 0.11% of DS1 bacterial
sequences, 0.06% of DS2 sequences, 0.20% of SRC sequences, and
0.13% of soil sequences (all soil sites combined). Relatives of the
Mn(II)-oxidizing bacterial isolates were not detected in the PBS se-
quence data, even at a similarity level of only 95%.

Overall, nine Mn(II)-oxidizing fungi isolated from these MRBs
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FIG 2 Taxonomic affiliation of bacterial, fungal, and algal sequences. Bacterial profiles (n � 1,166 sequences per sample) are shown at the phylum level. For
clarity, only phyla accounting for at least 2% of sequences are shown, with the less abundant phyla grouped under “other bacteria.” For fungi (n � 1,885 sequences
per sample), only classes accounting for at least 1% of sequences are shown, with remaining grouped under “other fungi.” For algae (n � 518 sequences per
sample), phyla belonging to the Viridiplantae are shown in green, and phyla belonging to the Stramenopiles are shown in purple. Labels on the horizontal axis
indicate the sample location within each Mn(II) removal bed (inf, influent; mid, middle; eff, effluent; soil, uncontaminated soil collected outside the bed), and
for display, black lines separate the soil samples from the Mn(II) removal bed samples.
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(20) accounted for a greater proportion of the sequence data than
did the Mn-oxidizing bacterial isolates, with several fungal isolates
individually exceeding 1% of sequences at a similarity level of
100% within some treatment beds (see Fig. S8 in the supplemental
material). SRC1 had the greatest abundance of known Mn(II)-
oxidizing fungi: eight of the nine isolates were detected, with
Phoma sp. strain DS1wsM30b accounting for 10.52% of sequences
and Alternaria alternata SRC1lrK2f accounting for 2.81%. In total,
known Mn(II)-oxidizing fungal isolates accounted for 14.78% of
SRC1 fungal sequences. In contrast, these fungal isolates together
accounted for 1.92% of DS1 fungal sequences, 1.63% of DS2 se-
quences, and 1.43% of PBS sequences (see Fig. S8). Eight of the
nine isolates were detected in the control soils, and together they
accounted for 4.11% of soil fungal sequences.

Biotic coupling. Previous analyses were carried out separately
with the three target groups (bacteria, fungi, and algae). With this
final analysis, we attempted to determine whether the community
structures of the three target groups were correlated or whether
they were independent. In other words, are samples that are more
similar with respect to one target group also more similar with
respect to the other target groups?

Significant positive correlations were found between all pairs of
target groups (Mantel r, 0.446 to 0.665; P�0.001) (Fig. 3). Therefore,
samples with more similar communities of one target tend to have
more similar communities of the other targets; for example, samples
with more similar bacterial communities typically have more similar
fungal and algal communities as well, whereas samples with very dif-
ferent bacterial communities also generally have very different fungal
and algal communities. Figure 3 shows Bray-Curtis distances calcu-
lated from a relative abundance of OTUs clustered at the 0.03 level,
but the significant positive correlations between target groups hold at
all OTU clustering levels between 0.00 and 0.20, as well as when Jac-
card distances based on presence/absence data are used instead.
Overall, the three targets examined here showed strong biotic cou-
pling, both in their membership and in the relative abundance of their
community members.

DISCUSSION

Microbial activity contributes greatly to the removal of Mn(II)
from coal mine drainage (2), and understanding the communities
involved could improve remediation efforts. We profiled the bac-
teria, archaea, fungi, and algae in four Mn(II) removal beds
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FIG 3 Correlation of bacterial, fungal, and algal communities in Mn(II) removal beds. Scatter plots show pairwise Bray-Curtis distances for all samples, excluding SRC1
soil (15 samples in total, yielding 105 pairwise data points), with increasing distance indicating less similar communities. Distances were calculated from OTU relative
abundance matrices based on a clustering threshold of 0.03. Correlation statistics for each pair of targets (bacteria, fungi, and algae) were calculated using Mantel tests
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(MRBs) to determine (i) whether each bed develops a unique
community or whether similar communities arise in different
beds, (ii) whether differences are observed within each bed (from
the influent to the effluent), and (iii) whether MRB communities
are distinct from the surrounding CMD-free soil. Our four MRBs
remove various proportions of their influent’s dissolved Mn (see
Table S1 in the supplemental material): nearly 100% in PBS and
SRC1, 50% in DS2 (which, granted, has a higher influent concen-
tration than the other MRBs), and 0% in DS1 (2). Of particular
interest is whether microbial communities differ substantially be-
tween MRBs that remove the majority of influent Mn (PBS and
SRC1) and those that do not (DS1 and DS2).

Of the four microbial groups profiled, only the fungi showed
stark differences at the phylum level between the MRBs that re-
move the majority of influent Mn (PBS and SRC1) and those that
do not (DS1 and DS2) (Fig. 2). The similarity of DS1 and DS2
MRB samples could be due to the geographic proximity of these
two beds (roughly 250 m separates them), although if this were the
only factor, their corresponding soil samples also would be ex-
pected to show similarities to each other, which is not the case
(Fig. 2). Ascomycota sequences, belonging mainly to the classes
Dothideomycetes and Sordariomycetes, were significantly more
abundant in PBS and SRC1, whereas Basidiomycota sequences,
almost exclusively in the class Agaricomycetes, heavily dominated
the fungal profiles of DS1 and DS2. Both Ascomycota and Basidi-
omycota, and specifically the main classes identified in our four
MRBs, contain known Mn(II)-oxidizing members. However, pre-
vious efforts to isolate Mn(II)-oxidizing fungi from these beds
yielded only Ascomycota (5, 20), as did culturing efforts in other
Mn(II)-rich environments, such as Ashumet Pond, Massachusetts
(15), Mn nodules in Japanese rice fields (12), Mn oxide-coated
stream bed pebbles in Japan (17), and another Mn attenuation
system in the United Kingdom (19). Most of the isolates obtained
in these culturing studies belonged to the Ascomycota classes
Dothideomycetes and Sordariomycetes, the same two fungal classes
that dominated the MRBs with near-complete Mn(II) removal in
our study (PBS and SRC1). Furthermore, the Mn(II)-oxidizing
Ascomycota isolates obtained in reference 20 from these MRBs
were more abundant in the sequence data from SRC1 than from
PBS, DS1, and DS2. Interestingly, nearby soils had a higher pro-
portion of these isolates than three of the four MRBs, suggesting
that the Mn(II)-oxidizing fungi that colonize MRBs are not spe-
cific to aquatic sediment environments and that the fungal com-
munities in MRBs are seeded in part from nearby soil.

The Basidiomycota class Agaricomycetes, which dominated fun-
gal profiles in DS1 and DS2 (Fig. 2), usually is found in terrestrial
environments, although it also was abundant in a culture-inde-
pendent survey of fungi in Mn oxide-rich sediments in Ashumet
Pond, Massachusetts (15). Several species of wood-rot or litter-
decaying Agaricomycetes can oxidize Mn(II), notably Phanero-
chaete chrysosporium (50), Stropharia rugosoannulata (51), and
Pleurotus eryngii (52). However, no close relatives of these known
Mn(II)-oxidizing Agaricomycetes were present in the four MRBs,
with the exception of a single sequence in DS2 with 100% similar-
ity to S. rugosoannulata. Therefore, the bulk of the Agaricomycetes
sequences that dominate DS1 and DS2 do not belong to known
Mn(II) oxidizers, although it is possible that the taxa present can
oxidize Mn(II) but have remained resistant to cultivation. Previ-
ous culturing attempts failed to obtain Mn(II)-oxidizing isolates
from this class (20).

Interestingly, the stark differences in fungal taxonomic profiles
between MRBs that remove the majority of Mn(II) and those that
do not were not mirrored in the other groups (Fig. 2). Bacteria are
thought to be the main drivers of biological Mn(II) oxidation in
many environments, but if that were the case in our MRBs, we
would expect some differences in bacterial taxonomic profiles be-
tween MRBs that remove the majority of Mn(II) and those that do
not, as well as within each MRB, correlating with dissolved Mn(II)
concentrations. The similarity in bacterial communities across all
four MRBs, in contrast to the drastic differences in fungal com-
munities, suggests that the latter are important drivers of Mn re-
moval in these MRBs. This supports the findings of Burgos et al.
(5), who, in a series of MRB sediment incubation experiments
with and without fungicides, showed that fungal activity ac-
counted for over 80% of Mn(II) oxidation in the Fairview MRB in
Pennsylvania. However, in later experiments, the same research
group found that fungi were not dominant contributors to Mn(II)
oxidation in sediments from that same MRB, as well as from seven
others (2), suggesting that Mn(II) oxidation is a dynamic process
affected by hydrological and other factors (although as these au-
thors noted, their laboratory growth conditions may have inhib-
ited fungal activity).

Taxonomic profiles alone cannot rule out a prominent role for
bacterial Mn(II) oxidation in our four MRBs, since differences
between the beds in the proportion of influent Mn(II) removed
could be due to environmental conditions that favor or inhibit the
activation of necessary metabolic pathways without changing tax-
onomic distributions. Proteobacteria were the most abundant bac-
terial phylum in the MRBs (Fig. 2). The same has been reported in
most culture-independent surveys of Mn-rich environments, in-
cluding Mn oxide-rich freshwater sediments in the United States
(15, 53), Mn nodules in Japanese rice fields (54), ferromanganese
deposits in caves (55), and in biofilters treating Fe-, Mn-, and
ammonia-containing water (56, 57). The abundance of Proteobac-
teria is not unusual. This widespread, highly diverse phylum is
dominant in many environments, notably soils (including the
four control soil samples in this study, although at a significantly
lower abundance than that in the MRBs). It also encompasses
numerous confirmed examples of Mn(II) oxidation in the Alpha-,
Beta-, Gamma-, and Deltaproteobacteria (10, 11, 14, 15, 24, 55).
Indeed, many of the model Mn(II)-oxidizing bacteria used to elu-
cidate mechanisms of oxidation belong to this phylum (23–25,
58). However, since the relative abundance of proteobacterial taxa
did not differ significantly between MRBs, even at increasingly
fine taxonomic resolution, and the relative abundance of any of
the other bacterial phyla did not differ, the taxonomic profile of
the bacterial communities cannot be correlated with differences
in the proportion of Mn(II) removed by the four MRBs. Of
course, since these are DNA-based profiles that include dead and
dormant cells, it is possible that the active components of the
bacterial communities show more pronounced differences be-
tween or within the MRBs that could be detected only with RNA-
based profiling.

At first glance, algal taxonomic profiles appeared to differ be-
tween MRBs that remove the majority of dissolved Mn(II) (PBS
and SRC1) and those that do not (DS1 and DS2) (Fig. 2), with
more Stramenopiles sequences (diatoms and yellow-green algae)
in DS1 and DS2 than in PBS and SRC1, which contained mostly
Viridiplantae sequences (green algae and plants). Due to the high
variability within each bed and the small number of samples per
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bed, these differences were not statistically significant, so we can-
not draw any conclusions regarding the influence of algae on the
proportion of Mn(II) removed by these systems. However, it is
likely that they contribute to Mn removal in some capacity, either
indirectly [by providing fixed carbon for Mn(II)-oxidizing fungi
and bacteria] or by oxidizing Mn(II) directly. Algae, including
green algae such as Klebsormidium, Chara, Ulothrix, and Chlamy-
domonas, as well as diatoms, often are observed to thrive in metal-
contaminated environments (59, 60), and a limestone treatment
pond with a mixed green algae and microbial mat removed far
more dissolved Mn than limestone alone (61). Algae not only can
accumulate Mn up to 90,000 mg/kg dry weight (62) but also can
catalyze its oxidation directly (63–65). This is thought to occur
through the creation of pH microenvironments, whereby dense
populations of algal cells, through photosynthesis, increase local
pH above 9.0, resulting in abiotic oxidation of Mn(II) by molec-
ular oxygen (63). Furthermore, photosynthesis-linked pH modu-
lation might not be the only mechanism of algal Mn(II) oxidation.
Robbins et al. (64) hinted at this when, on glass slides submerged
in a Mn-contaminated creek, they observed that some, but not all,
diatoms were coated with Mn oxides, whereas all would be ex-
pected to produce Mn oxides if the mechanism were purely pho-
tosynthesis-linked pH modulation. Many algae are known to pro-
duce reactive oxygen species, notably superoxide, as a by-product
of photosynthesis, as antibacterial agents (66), and in response to
metal contamination (59). Some bacteria (25) and fungi (22) ox-
idize Mn(II) via superoxide production, and it is possible that
some of the algae in our MRBs can do the same.

While the taxonomic profiles showed that only fungal commu-
nities differed significantly between MRBs, OTU-based analyses
painted a different picture. When samples were clustered based
on distance metrics (Bray-Curtis and Jaccard), clear patterns
emerged (Fig. 1). First, distinctions were seen between soil and
MRB samples, with MRBs from different parts of Pennsylvania (as
far apart as 150 km) clustering more closely together than with
their corresponding soil samples, suggesting that MRBs in dispa-
rate areas select for similar communities, and MRB communities
are not simply a subset of those in their immediate surroundings.
This pattern held for bacteria and algae; however, fungi showed no
separation of soil and MRB samples; instead, soil samples were
loosely clustered with those from their corresponding MRB, sug-
gesting a different community development history and perhaps
different dispersal mechanisms. Furthermore, while the patterns
in bacterial and algal community structure clearly are influenced
by one or more of the factors that distinguish MRBs from nearby
soils (water-saturated versus drained, high metal load in MRBs,
differences in carbon and nutrient availability, etc.), clearly these
factors are less influential drivers of fungal community structure
in these systems. Of importance might also be the use of ITS1 for
fungal profiling compared with ribosomal subunits for the other
groups. ITS1 is degraded after transcription and has high variabil-
ity, including intraspecific variability that is more pronounced in
some fungal lineages than in others (67). The greater scatter in the
fungal NMDS plot could be a result of the fundamentally different
function of and selection pressures operating on ITS1.

The second pattern observed in the NMDS plots was some
loose clustering by treatment bed, which occurred with all groups
(Fig. 1). In several instances, DS1 and DS2 samples showed some
overlap, which is not surprising given their geographic proximity
(roughly 250 m separates them). Perhaps more interesting, PBS

and SRC1 often showed some overlap as well (for example, with
bacteria and algae shown in Fig. 1). These MRBs are over 50 km
apart. Their main similarity, in the context of this study, is that
they remove nearly 100% of influent Mn(II), whereas the other
two MRBs remove far smaller proportions (50% and 0%). This
suggests that, despite the bacterial and algal taxonomic profiles
being similar in MRBs that remove different proportions of influ-
ent Mn(II), subtle differences at the OTU level that are consistent
across highly efficient beds could point to subgroupings of micro-
organisms with metabolic functions that are more conducive to
Mn(II) removal. A wider survey of MRBs would be required to
confirm this finding, and a more targeted investigation focusing
on the specific OTUs in highly efficient MRBs could give insight
into mechanisms of Mn(II) removal in mixed communities.

The sample clustering observed at the OTU level was not re-
flected in the taxonomic profiles, highlighting differences in the
two approaches. Taxonomic profiling is coarse (especially when
limited to phyla and classes) and relies on accurate reference da-
tabases, whereas OTU-based analyses rely solely on sequence data.
It is interesting that in this study, while different OTUs appear to
occur in each MRB [with more similar OTUs being detected in the
MRBs with near-complete removal of Mn(II)], their proportion
remains fairly constant across the main bacterial and algal taxo-
nomic groups (but not fungal ones).

We showed that microbial communities in MRBs are far more
diverse than suggested by culturing or by culture-independent
profiling of a single group. Similar to findings of reference 15,
known Mn(II) oxidizers, especially bacterial ones, accounted for a
small proportion of the total community, suggesting that their
activity is not coupled to their relative abundance or that many
more organisms are capable of Mn(II) oxidation than have been
cultured, including organisms, such as algae, that have not been
directly associated with Mn(II) oxidation in these systems. Clear
differences were observed between MRBs with near-complete re-
moval of Mn(II) and those that remove smaller proportions of
influent Mn(II). Future work should expand to include groups
not covered in this study, notably heterotrophic eukaryotes, which
also could be influencing Mn(II) oxidation, and examine more
closely how microbial communities become established in new
MRBs, with particular emphasis on differences between fungi and
other community members. Furthermore, it is important to elu-
cidate the mechanisms by which these organisms oxidize Mn(II),
since this could inform remediation strategies. For example, since
oxidation is linked to superoxide production, encouraging pro-
cesses that produce superoxide, such as fungal cell differentiation,
should result in greater Mn(II) removal. Finally, given that the
groups examined here showed significant biotic coupling (sug-
gesting a degree of interdependence), it is worth exploring
whether seeding new systems with mixed communities is more
effective than seeding with pure cultures or allowing communities
to develop without seeding.
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